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Abstract 

With respect to the Dirac operator and the conformally invariant Laplacian, an explicit description 
of the inverse Penrose transform on Riemannian twistor spaces is given. A Dolbeault representative 
of cohomology on the twistor space is constructed from a solution of the field equation on the base 
manifold. 
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0. Introduction 

The Penrose transform is a method to give solutions of the Dirac equation and the con- 
formally invariant Laplacian. It is done by relating solutions of the field equations to co- 
homology with values in a certain holomorphic line bundle over the twistor space of the 
manifold. 

The Penrose transform on four-dimensional half-conformally flat manifolds was studied 
by Hitchin [HI. Murray [M] generalized it to higher-dimensional conformally flat manifolds. 

The correspondence between cohomology and the space of solutions of the field equation 
was proved to be one-to-one. But the sufficiency part of the proof, that is, to construct a 
cohomology class from a solution of the field equation, was proved indirectly in both papers. 
In the four-dimensional case, an explicit formula for the inverse Penrose transform was given 
by Woodhouse [WI. 
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In this paper, we shall give an explicit description of the inverse Penrose transform for 
Riemannian manifolds by constructing a Dolbeault representative of the corresponding 
cohomology (Definition 4.4 in the four-dimensional case and Definition 2.3 in the higher- 
dimensional cases). Definition 4.4 is equivalent to the formula given by Woodhouse. 

Let M be a 2n-dimensional spin manifold and let V be a Hermitian vector bundle on M 
with a connection. We assume the conditions on the metric of M and the curvature of V 
which enable us to perform the Penrose transform. Then the twistor space Z*(M) of M 
is a complex manifold, and the hyperplane bundle H and the pull back bundle p-’ V on 
Z*(M) are holomorphic bundles. Let A*(M) be the spin bundle on M. Then the twisted 
differential form on Z*(M) which represents the cohomology class corresponding to 4 E 
T(M, PA*(M) 63 V) is written as 

Qm(@> = (n + m - 2)!F(n+m-2)(D)j(@), 

where D is a differential operator and F(“+m-2) is the (n + m - 2)th derivative of the power 
series F(x) = c,“=, ~~/(k!)~. The lifting j(@) is written as 

j : r(A4, SmA*(M) @I V) --f r (Z*(M), .“‘(1’2)n(n-‘)Z*(M) V 

@H-2n+2-m ,c& p-l V>, 

where ,03(l/2)n(n-1) k Z (M) is a line subbundle of A0,(‘/2)n(n-‘)Z*(M). The definitions of 
D and $(i,%+-i) f 

V Z (M) in the four-dimensional case are slightly different from those 
in the higher-dimensional cases. 

In the four dimensional case, A:‘Z*(M) is the space of vertical forms with respect to 
the Levi-Civita connection on M, which is defined globally. The operator D is also defined 
as a global operator. 

In the higher-dimensional cases, the assumption of the metric of M means that there are 
local conformally flat coordinates. The line subbundle A, 0’(1’2)n(n-‘)Z*((M) is the space 
of vertical forms corresponding to the trivialization with respect to these coordinates. The 
operator D is also defined with respect to them. Although j and D are defined to be local 
operators, it is shown that the constructed inverse Penrose transform is defined independently 
of the particular conformally flat coordinates which are chosen. 

In both cases, it is shown that Dnf’ vanishes. Hence the construction is in fact a finite 
sum. 

In the proof of the vanishing of sQ,(#) and the independence of the construction of 
Qm with respect to the coordinates chosen in the higher-dimensional cases, the defining 
equations of Z* as a subvariety of P(k) play an important role (see Lemma 2.6). They 
were given in [Ill in the course of my definition of Riemannian twistor spaces. Although 
they are trivial in four- and six- dimensional cases, they are still useful by our extension of 
notation of multi-indices. 

In Section 1, we review the theory of the Penrose transform on Riemannian twistor spaces. 
In Sections 2 and 3, we give the inverse Penrose transform on 2n-dimensional manifolds 
with IZ > 3. The local construction of the inverse Penrose transform is given in Section 2, 
and the independence of the construction with respect to the coordinates which are chosen 
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is proved in Section 3. In Section 4, we deal with the four-dimensional case, in which a 
non-conformally flat manifold may admit the integrable twistor space. 

1. The Penrose transform 

Let us review the Penrose transform for the Dirac operator and the conformally invariant 
Laplacian on even-dimensional spin manifolds (see [HI: the four-dimensional case, and 
[Ml: the higher-dimensional cases). 

Let M be a 2n-dimensional spin manifold, and let V be a Hermitian vector bundle on M 
with a connection. Let A+(M) (resp. A-(M)) be the positive (resp. negative) spin bundle. 
The field equations that we consider are the Dirac operator 

& : T(M, PA*(M) @ V) -+ f (M, AT(M) @ S”-‘A*(M) 8 V) 

for m > 0 and the conformally invariant Laplacian 

do : f(V)-+ f(V) 

4 I+ v*v(@) + 2(;n-_1 l)r4, 

where r is the scalar curvature of M. The differential operator d,,, is conformally invariant 
with conformal weight n - 1 + irn. 

Assume n 1 2. Let Z+ be the parameter space of complex structures of a 2n-dimensional 
real vector space compatible with acertain metric and a certain orientation. If we consider the 
opposite orientation, we have a similar manifold Z- . Let SO(M) be the oriented orthonormal 
frame bundle of M. Riemannian twistor spaces are defined as 

Z*(M) = SO(M) xSO(~~) Z*. 

which have natural almost complex structures. We assume that M has an integrable twistor 
space. Let p be the projection p : Z*(M) + M. Assume that the pull back of the curvature 
form of V by p is a End(p-’ V)-valued (1, I)-form. Then the pull back bundle p-’ V can 
be naturally considered to be a holomorphic vector bundle. 

There is a holomorphic line bundle H on Z*(M), which is called the hyperplane bundle. 
Let us define the Penrose transform: 

Pm : H(“2)“(“-‘)(Z*(M), H-2n+2-m @ p-IV) -+ f (M, SmA*(M) @ V). 

By restricting cohomology classes to each fiber, we have a map 

H(‘/%(n-‘)(Zf(M), H-2n+2-m @ +V) 

-U H(‘/2)“(9@, H-2’+‘7 @ V,, 
XEM 

This induces P,,,, since H(1/2)n(n-‘)(Z$, H-2n+2-m) is equivalent to SmA$ as a repre- 
sentation space of SPIN(T, M) by the theorem of Bott-Borel-Weil-Kostant. 
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Theorem 1.1 ([H, Theorem 3.1; M, Theorem 321). The map P,,, induces an isomorphism 
onto the space of the solutions of d,,,4 = 0. 

2. The local construction of the inverse Penrose transform 

In this section, we deal with the local construction of the inverse Penrose transform when 
the base manifold is 2n-dimensional with n > 3. We assume that M is an open subset of 
KY*” with the standard metric and the vector bundle V is trivial. Hence we can safely omit 
V by considering it as a trivial line bundle. 

By Dolbeault’s theorem, we have a representation of the cohomology group: 

We construct a &closed form in r(Z*(M), A0,(1/2)n(n-1)Z*(A4) @ H-2n+2-m) from a 
solution of d,@ = 0. 

We begin by defining a differential operator D acting on 

r(Z*(M), RZ*(M) @ H-*n+2-m). 

The action of SO(2n) on .Z* induces a linear map 

3 : 642n) -+ r(z*, O), 

where 0 is the holomorphic tangent bundle on Z* , which is considered to be the (1 , 0)-part 
of the complexified tangent bundle TZ’ ~3 C. With respect to the Lie algebra structures, 
we have 

3([a, bl) = -L-W), 3(b)]. (2.1) 

Let 

e, = a/ax,, ea = dx,, a= 1,...,2n 

be the standard frames of TM and T*M, respectively. Let (Et))5a,bi2n be the frame of 
End(TM) defined as EEe, = 6Feb and put Fclb = Eg - E,b. By considering it as an element 
of so(2n), we define a vector field .&b on M x Z’ = Z’(M) to be 

&b = 3(Fab). 

Then we define a first-order differential operator D acting on r(Z*(M), A*Z*(M) 18 
H-%-m) as 

D = -L,i(z)eb, 

where L is the Lie derivative and i is the interior multiplication. The action of the horizontal 
form eb is the exterior multiplication. 
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(1) The differential operator D is invariant under the conformal automorphism of R*” if 
it is considered as an operator on Z*(R*“). 

(2) Let 1 and 1’ be non-negative integers. Then we have 

Dr(Z*(M), k.“Z*(M) @ H-2n+2-m) 

c r(z*(M), ft’.“Z*@z) @ H-*n+*-m) 

(3) We have Dnfl = 0. 

Proojf We have (1) immediately by the definition. Since eb and L,, i (F&) are commutative 
and the space of horizontal (0, 1)-forms are n-dimensional, (3) follows by (2). We will prove 
(2) later in this section, since it is needed a system of local coordinates of the fiber. 0 

Put 

Xk 
F(x) = 2 - 

kc0 W>*’ 
An essential property of this function is the following lemma. 

Lemma 2.2. Let 1 be a non-negative integer. Then we have an equation 

xF(‘+*)(x) = -(I + l@+‘)(x) + F”‘(x). 

Remark. The function F also appears in the construction of the inverse Penrose transform 
of the Dolbeault complex [12]. 

Let ~O.(l/2M4) be the line subbundle of A”.(‘/2)n(n-‘)Z*(M) spanned by vertical 
forms. If”we identify H-’ with % by the Hermitian metric, we have 

~0,(‘/2)“(“-1)+(M) ,c& H-2n+2-m > 41/*)n(n-1) @ H-2n+2-m ” pm, 

since ~0~(1/2)“(“-1) 
V 

” ~-2nf2. 
By the theorem of Bott-Borel-Weil-Kostant, we have an 

isomorphism 

H’(Z*, H”) zx (,,A*)*. 

Hence we can define a lifting 

j : r(M, SmA*(M)) _+ f(Z+(M), Ao,(l/*,n(n-l,Z*(M) @, H-*“+2-m) 

By using D and j, we can define the local inverse Penrose transform as follows. 

Definition 2.3. We define a map 

e, : f (M, S”A*(M)) + T(Z*(M), A0,(‘/2)n(n-‘)Z*(M) @ H-2n+2-m) 

$J H (n + m - 2)!FCnfm-*)(D)j(@). 
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Remark. We shall prove in the following section that &, does not depend on the confor- 
mally flat coordinates of M and the trivialization of V which are chosen. Hence Q,,, can be 
considered as a global conformally invariant operator. 

Let us describe the Penrose transform P,,, by using the Dolbeault representation of co- 
homology classes. Since the complex dimension of Z,’ is (1/2)n(n - l), the isomorphism 

H(‘/2)“+t)(Zxf, H4+2-m) 2 S”A; 

induces a map 

r(Z* ~0,(1/2)@-1)Zxf ,c& f.+n+2-m) + SmA* 
X’ X’ 

Hence we have a map 

@jj : r(Z*(M), .“,(1’2)n(n-1)Z*(A4) @J IY-~‘+~+) + T(M, YA*(M)). 

Then & induces the Penrose transform P,,, . Since we have p;, (Q, (4)) = C$ for any section 
4 E P(M, SrnA%f)), we finish constructing the local inverse Penrose transform by the 
following theorem. 

Theorem 2.4. Let $I be a section of S”’ A*(M). Then Q,,, (4) is &closed ifd,,,4 = 0. 

The remainder of this section is devoted to a proof of this theorem. We prove it by 
computing dFc”+m-2)(D) - F(“+m-2)(D)d. 

Lemma 2.5. 
(1) Put E = d D - Dd. Then, we have 

E = -L, Lzeb. 

(2) Let dH = ea L,, be the exterior di$erentiation to the horizontal direction, and put 

r = ea A ebi(Fab) c(La,&,)2. 

Then, we have 

ED - DE = -2DdH + r, rD-Dr=O, dHD-DdH=O. 

(3) Let f(x) be a power series. Then we have 

df (D) - f (D)d = f’(D)E - f”(D)DdH + ; f”(D)l? 

ProoJ: 
(1) Let 52 be the curvature form of H- 2n+2-m. Let u be a vector field on Z*(M). Then 

we have 

Id, Ll = --[i(u), Ql 

as an operator acting on r(Z*(M), A*Z*(M) @ H-2n+2-m), Since [i(e,), C?] = 0 
for any integer a such that 1 5 a _( 2n, we have the desired equation. 
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(2) The second equation and the third one are immediate by the definitions and the formulas 

IL”, i(Gl = i([v, 0, [L”, L/l = L[“,“,] + Q(v, a, 

where u and u’ are vector fields on Z*(M). By (2. l), we compute 

[F;?b, Fcdl = -&c3bd + &dFbc + 8bc&d - abdFac> 

so we have 

[E, D] = -2Dd,y + r. 

(3) By induction on k, we have 

dDk - Dkd = kDk-‘E - k(k - l)Dk-‘d/j + ;k(k - 1)Dk-2f, 

which completes the proof. 0 

By Lemmas 2.2 and 2.5(3), we have 

dF(“+m-2)(D) = F (n+“-2)( D)(d - dH) 

-tF(“+“-‘)(D)(E -t (PI -+-m - i)dH) + $F’“+“‘(D)r. 

Since j (4) is harmonic in the vertical direction, we have 

F’“+“-2)(D)(d - dH)j(@) = 0. 

If Cp satisfy dm$ = 0, by Lemma 2.5(2), we have 

; F(“+“)(D)T~($) = 0. 

Hence we complete the proof by computing the action of E. 
Let us extend notation of a multi-index of the spin module in [Ill, which significantly 

simplifies computation as we will see below. Let (8/)1<(1,,,,,,) be the basis of the spin 
module A defined in [Ill, where I < (1, . . . , n) means that I is a subsequence of the 
sequence(l,..., n). We regard a multi-index I as a finite sequence of possibly duplicate 
elementsof(l,..., 2n], and for 1 = (il, . . , ik), 81 is defined as 81 = ei, * . . * eik * 8~ 
where * is Clifford multiplication. Let (Z’)I,(~,...,,) be the dual basis of (of). Then we can 
consider Z’ for a multi-index Z in the same way. Reduction of a multi-index is performed 
as follows. Let Z be a reduced multi-index, i.e. Z is a subsequence of (1, . . , n), and let i, 
j be distinct integers such that 1 5 i, j 5 n. Then 

Oii/ = -61, Oijl = -0ji[, o(n+i)I = 1 a&[ ifi @I, 

-CiQi] if i E I. 

In the dual representation, we have 

2”’ = _zI, ziil = _ZjiJ, Z(n+i)I 

I 

-J_1Z” if i $ I, 
= flZi’ if i E I. 
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Then we can reduce any multi-index I to a unique reduced index I’ < (1, . . . , n) such that 
Z’ = fZ” or Z* = f&iZ” holds. When a multi-index I is used as a set (for example 
i E I and I U .I), it is considered to be the set of numbers contained in the reduced form of 
I. Let ] Z 1 be the length of the reduced form of I. Then we have 

A+ = (01 1 111 GO(~)), A- = (et I 111 = l(2)). 

Since Z* is a subvariety of P(A*), Z’ can be considered as a homogeneous coordinate 
of Z*. For simplicity, we regard Z’ as a zero function when ]Z] has the parity opposite 
to that of projectivized spinors in which the variety lies. The defining equations of Z’ are 
given in [Ill. They can be given in our notation as follows. 

Lemma 2.6. For multi-indices Z and J, let d(Z, J) = (I \ J) U (J \ I). Let a and b be 
integers such that 1 5 a, b 4 2n. Then we have the following relations on Z*: 

(1) c k&(1 J) Zk’ZkJ = 0. 

(2) za’zaj = 0. 

(3) Cked(l,J) - 
ZakIzbkJ _ ZIzabJ _ ZablzJ 

ProoJ (1) is an immediate consequence of [Il, Corollary 3.31. Let i be an integer such that 
1 pi in.Then 

zilziJ + Z(n+i)IZ(n+i)J = 2zi’ziJ, i E d(Z, J)t 
0, i @d(Z, J). 

Hence (2) follows immediately by (1). We can prove (3) by simple computation using (2). 
0 

Now we fix a multi-index I. Let zJ = ZJ/Z’ for a multi-index J. We let wij = zij’. 
Then (wij)lsi<jin are local coordinates on UI = {[ZJ] E Zf U Z- ( Z’ # 0). 

Lemma 2.7. For integers i and j such that 1 5 i < j 5 n, we have 

’ i, j E d(l, J), 
otherwise. 

Proo$ We have the relation 

zJ = cZabJZcdJ _ pJZbdJ + .pdJZbcJ~lZabcdJ (2.2) 

by Lemma 2.6(3). Thus we can prove the lemma inductively by taking appropriate integers 
a, b, c, and d. 0 

Lemma 2.8. The vector$eld &b is written in the local coordinates as 

3ab = C ;QVIZait _ ZajIZbiI)alawij. 
liiijsn 
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Proofi Since the one-parameter subgroup of SPIN(2n) corresponding to Fat, is cos it + 
sin if e,eb, its aCtiOn is W&ten as 

ZJ(t) = cos $tZJ + sin itZbCIJ. 

Thus, by using (2.2), we compute 

dwij (t> 
dt 

= z(z I bjlZail 
-Z 

hilZajI 
19 

t=O 

which completes the proof. 0 

Lemma 2.9. The space of horizontal ( 1 , O)-forms on Z*(M) is spanned by 

(YJ = -zaJ ea, .I c (1, . . . , n). 

ProojY It suffices to show the lemma when M = R*“. Its Riemannian twistor space is given 
in [Il, Section 81. Let A’ be a spin module of SPIN(2n + 2): 

A’ = (0, 1 .I c (0, 1, . . . , n)). 

Let Z’+ c P(k) be the parameter space of the compatible complex structure of the vector 
space lR2n+2, which can be identified with the twistor space Z+(S*“). Since stereographic 
projection defines a conformal embedding [W2n c S*“, Zf(R2n) is an open submanifold of 
Z+(S*“). Let (ZJ) be the homogeneous coordinates with respect to (0~). Then we have: 

Z+([W2n) = ((ZJ)~<(c ,,.., n) E Z’+ 1 3J -c (1,. . , n) such that ZJ # 0). 

Since a translation of [w*” is a conformal transformation, it induces a holomorphic trans- 
formation of Z+([W*“), which is representable by an element of SPIN(2n + 2; C). Let x = 

(Xl,... , ~2~) be an element of [W2n. Then the corresponding element of SPIN(2n + 2; C) 
is: 

1 2n 
U(X) = 1+ -2 c x,e,(Cieo + eu0, 

a=l 

where we think the standard basis of [W2n+2 to be (eu, et, . . . , e,, euf , e,+ 1, . . . , ez,,). A point 
on the fiber over 0 E [w*” is written as C,5o Z’B,, thus its image by the transformation 
U(X) is written as 

a(X) c zJ6J = z”8J + d+az”Jeu,. 

JP a=1 

Hence, for a multi-index J such that 0 $ J, the homogeneous function 

ZOJ = &&ZOJ 
a=1 

is holomorphic, which completes the proof on Z+(M). The proof on Z-(M) is done in the 
same way. 0 
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Remark. By the definition of the almost complex structure of twistor spaces, the lemma 
is true for any spin manifold M and any oriented orthonormal frame (e’) of T*M. 

Now we can calculate the action of E. Let It, . . . , Zm be multi-indices having the same 
parity of length. Let 81, ,...,Zm E Sm A* be the symmetrization of 81, 8 . . . @ 81,. Then we 
define 

s’l.-.Im = j(e[ ,,..., I,). 

We compute its action on M x UI for a multi-index I. If m > 1, we assume ]I I = 111 l(2), 
since (II = 0 in other cases. 

Lemma 2.10. We have 

m  aqbIl,Iz,...,I, ~ 
W+(n+m-l)&)j@)=-y ax ,b ,, sag ,....I, 

a 
zn _ 2 + m a#13...31m _ ~ 

- 
2N ax, 

pfuJ ,, ,II....,I, 

where N = C Jp IzJ I2 is the Hermitian metric of H-’ with the standard trivialization on 
M x UI. 

ProojI Let a and b be distinct integers such that 1 5 a, b 5 2n. Then we claim 

2n-2+m - 
N c 

J 

&‘JF+g?$ . 
i=l -1 

,Il,...Jm (2.3) 

Let 7 be the section of g corresponding to 8 J . Let K be the standard trivialization of 
/p,W)nW) 

V over A4 x UI. Then, by the definition of j, we can write 

First, we compute 

= _ c ?!!.$? c zJp p’ [By Lemma2.71 
lsifjin J S.t. i, jEd(I,J) 1 

= --& c c zbilZajJzJT [By Lemma 2.6(3)] 
J jed(I,J) 

1 
=- -- 

2 
A c zbJT + Zbal p’ [By Lemma 2.6(3)]. 

J 

Hence, for another multi-index I’ such that ]I’) = )I] (2), we have 
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Second, we compute 

L%s = -(n - l)zbaIK,. 

Therefore we have Eq. (2.3). 
By Lemma 2.5( 1) and (2.3) we compute 

~j(d)=_C1a”“““‘meb 

a#b 2 axa 

_2n-N2’m sIl...., I,,, 

m w 
abll,I2....,1,,, ~ zn _ 2 + m a#13...5L _ 

=_- 
2 

,b ,, s~~%...,~,,, _ 
___ 

axa 2N ax, 
~J~J ,, s~~....,~,,, 

-(n - 1 + m)dH j(4). 

Hence we complete the proof. cl 

Proof of Lemma 2.1(2). We have 

D = 5 c i(a/aw,j) (pil,jI - pjI&I) L,~,. 
Izl<J’,l 

Since L,, (dwij) = 0, Le, (crJ> = 0 and L,, (7) = 0, we complete the proof. •1 

Since D and a! J are commutative, the second term of Lemma 2.10 can be neglected 
modulo (1, 0)-forms. Hence, if m = 0, we finish the proof of the theorem. If m > 0, the 
coefficient of the first term is that of 6$,[, @ @I~,,,.,[~ in irnd, (4). Hence, if d,,, (4) vanishes, 
we have 

(E + (n + m - l)dH)j(@) E 0 modulo (1, 0)-forms 

for any non-negative integer m. Thus we complete the proof of the theorem. 

3. Well-definedness of Q, as a global operator 

By Theorem 2.4, we prove that Definition 2.3 gives an inverse Penrose transform locally 
when the base manifold is conformally flat. In this section we show that the construction 
is independent with respect to the conformally flat coordinates which are chosen and gives 
the global inverse Penrose transform. 

We continue assuming that the base manifold is 2n-dimensional with n > 3, hence the 
metric of the base manifold is conformally flat. We have a local inverse Penrose transform 
Q, by Definition 2.3 on each chart which has conformally flat coordinates. By a theorem 
of Liouville [DFN Theorem 15.21, a coordinate transformation is a certain restriction of an 
orientation preserving conformal automorphism of S 2n fixing the point which is regarded 
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as the center of each chart. The orientation preserving conformal automorphism group of 
S*” is SOu(l, 2n + 1). Let G be the isotropy subgroup at 0 E lR*” c S2n. Then we shall 
show the invariance of Qm under the action of G near the origin. 

Let CE(2n) be the orientation preserving conformal automorphism group of IX*“. Since 
a local conformal map can be extended uniquely to a conformal automorphism of S*“, 
CE(2n) can be considered to be a subgroup of SOu( 1,2n + 1). Let CO(2n) be the isotropy 
subgroup of CE(2n) at the origin. Let t be the conformal map defined as 

t : R2n \ (0) -+ R2n \ (0) 

x H x/1x1*. 

By computing the Lie algebra of G, we can show that the group G is generated by CO(2n) 
and t o T(x) o r for x E R2n, where T(x) is the translation map on lR*” by x. Since D and 
j are invariant under the action of CE(2n), Q, is invariant under the action of CO(2n). It is 
also invariant under T(x) for any x E R*“, so we can show its invariance under to T (x) o t on 
lJX2’ \ (0, r (-x)1 by showing its invariance under r on R*” \ (0). This proves the invariance 
of Q,,, under r o T(x) o t near the origin, since Qm(@) is expressible as a polynomial of 
jets of 4. 

Hence it suffices to show the invariance of &, under t on R*” \ (0). The following 
lemma is used to reduce the computation to a certain point on the fiber over the point 
xu=t(l,O,... , 0) instead of computing it on the whole space Z*(R*” \ (0)). 

Lemma 3.1. The group CO(2n) acts transitively on Z*(R*” \ (0)). 

Proof Since CO(2n) acts transitively on R2n \ (01, it suffices to prove the transitivity on the 
fiber over the point x0. The isotropy subgroup at x0 contains the subgroup which is naturally 
identified with SO(2n - 1). Then it acts on Z:O, and the isotropy subgroup at (x0, [el]) for 
an appropriate I is naturally identified with U(n - 1). Thus the isomorphism 

SO(2n - l>/U(n - 1) 2: S0(2n)/U(n> 

means that SO(2n - 1) acts transitively on the fiber Z:. 

Let B be an endomorphism defined as 

B = -[D, 1x1*1, 

where Ix I2 is considered to be an operator by the multiplication. 

Lemma 3.2. The operators D and B are commutative. 

I? 

ProoJ: We fix a multi-index I. Let z J and wij be as in Section 2. Then, by Lemmas 2.8 and 
2.6(2), we have 
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= i r x r x ZbjIzdlI(ZbilZbkI + ZdiIZdkl )i(a/awij)ebi(a/aii&+?d, 
b d i#j kfl 

where we put a/awji = -a/awij for integers i and j such that 1 5 i -c j 5 n. Since, for 
fixed integers b and d, we have 

c ZbjfPIi (ajazuij) = 0, CzdlIzdkIi(a/au;ki) = 0, 
i#i k#l 

we complete the proof. 0 

We can relate t* (j (4)) and j (t*@) by using B as follows. 

Lemma 3.3. We have t*(j(c$)) = exp(lxl-2B)j(s*$). 

Proo$ Let K be the orientation reversing isometry defined as 

K (‘(Xl, X2,. . ,X24 = t(-X,, X2, . . . > X2n). 

Let G’ be the transformation group generated by K and CO(2n). Then we have 
(1) anelementof G’preserves j and(l/lx]*)B, 
(2) rG’ = G’r, 
(3) G’ acts on Z+(lR2” \ {0)) U Z-(R2n \ (0)) transitively. 
Hence it suffices to compute them at the point zu = (x0, [@I). The map between the twistor 
spaces induced by t is written in the homogeneous coordinates as 

T : z+(lR*” \ (0)) + z-(R2” \ (0)) 

(x, [Z’l) ++ ( +3 hlza'l . > 
Hence t(xo, [@]) = (x0, [or]). We take the two systems of local coordinates 

wij = zij/Z* on Ufl, wij = Z’j’/Z’ on Ur, lii-cjin. 

Then we have 

-dwrj +ei - ae”+j, i = 1, 
i > 1. 

For each j, we have 

(ej - &ie”+j)i(a/awlj) * = 0. 

Thus we have 
n 

I-H 1 _ cej _ Ir_ien+i 
j=2 

)i@Pwlj’) = exp( lxlp2B) ILo . 
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r*/qJ,(t/2)n(n-U - 2n 
V 2 CR \ (0))/Lo 

is spanned by 

exp(lxl-2B)dwl;zr\...*G. 

Since we have s*(j(@)) 3 j(r*4) modulo horizontal forms, we complete the proof. 0 

Lemma 3.4. 
(1) We have Ds’lv.,.,‘m = 0. 
(2) puttI1,...,I, = IX12(n+m-U ~(t*0,,,...,,,,,). Then we have Dt’l,..,*‘m = 0. 

Proo$ Since Le,s*l,+*tm = 0 for an integer a such that 1 I a i 2n, we have (1). 
Let J be a multi-index. By using Lemma 2.6(2), we have 

[D, .x,7] = 5 r ~~ZbjtZbi*ZbJi(a/awii)eb = 0. 
b i#j 

The mth symmetric spin bundle SmA*(lR2n \ {O}) with conformal weight n - 1 + inz is 
transformed by t as follows. 

r*&,,...,I, = clxl 
-2(n+m-I) &, ... &,RqI ,,..., amIm t 

where c is the constant number determined by spin structures of both ends of r Then 

Hence we complete the proof of (2). El 

We have sCO(2n) = CO(2n)t. We have also that elements of CO(2n) preserve Q,. 
Hence, by Lemma 3.1, it suffices to show that &, is invariant under t at a certain point 
on the fiber over ~0. Actually, we do not need to specify a special point on the fiber, so 
we compare two inverse Penrose transforms on the fiber over the point x0. For simplicity, 
we write x’ = (x2, . . . , ~2~). Since they are linear with respect to 4, it suffices to show 
t* ( Qm (4)) = Q, (t*4) with respect to the section 

4 =x,%x’)@ I,,..., I,, 

where 1 is a non-negative integer and f(x’) is a homogeneous polynomial of degree 1’. 

Lemma 3.5. 
(1) Let a be an integer such that 1 5 a _( 2n. Then [D, x,] and D are commutative. 
(2) At points of the Jiber over x0, D” f (x’) is an endomorphism of the vector bundle, and 

the pull back by t is computed as 
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(3) The pull back of B by t is computed as 

s*B\~-,~~~~ = -B. 

Prooj We have 

[D, Xa] = -i(Fab)e 
b 

. (3.1) 

Since this is constant with respect to XI, . . . , x2,,, we prove the assertion ( 1). The Jacobian 
matrix of 5 : lR2” \ (0) -+ R2” \ (0) is 

IxI-~R(x), 

where R(x) is the reflection with respect to the hyperplane with the normal vector X. Since 
the operator (3.1) is transformed as a one-form, we have 

-[D,x11, a = I, 
~*[~.xallp-l(*o) = [ D  x ] 

i ’ a 3 a > 1. 

Hence we have the equation of (2). Since B\,-I Cx0j = -2[D, xl], we also have the equation 
of (3). 0 

If k < 1’, then we have Dk f (x’) = 0 on the fiber over x0. Hence, by Lemma 3.5(2), we 
have 

r* (c&@)) = (n +;!- 2)!D”f (J>t* (F(n+m-W(@&Kq. 

On the other hand, since xt’f(x’) is homogeneous of degree 1 + 1’, we have 

r*@ = jXJ-2Y+0 x,[f (x’)~*~,,,...,,. 

In the same way, we have 

Qm(r*@) = (n + ;!- 2)! D” f (X~)F(“+m-2+~‘)(~)IX,-2(n+m-I+I+I’)X,Itl,.....I,,, 

Hence we can show the invariance of Q,,, under t by the following lemma. 

Lemma 3.6. Let n’ be a non-negative integer At points on thejber over x0, we have 

Proo$ We prove this by induction on 1. Let 1 = 0. By Lemmas 3.4( 1) and 3.3, we have 

n’! r* 
( 

$“‘)(~)s’I*....‘fn 
> = exp(B)j (r*&, ,.._, I,, ). 

On the other hand, by Lemmas 3.2 and 3.4(2), we have 

n’! F(“‘)(D)(xl_ 2(n’+‘)t11,.-,‘m = exp(B)j(r*81,,,,,,I,). 

Hence we have the equation when 1 = 0. 
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Let us assume that the equation is satisfied for integers less than or equal to 1. Then 

co 

F(“‘)(D)q '+lsI ,,..., Im = c 1 

k=O k!(n’ + k)! 
&&‘,Jm 

cc 1 
= c k=o k!(n’ + k)! 

-+k-’ + Dk 
> 

.&I I,..., 1, 

= -:BF(“‘+‘)(D)x,‘s’,,...,~~ + F(“‘)(D)xl’s’,,...,f~. 

Hence, by Lemma 3.5(3) and the hypothesis, we have 

= ;&“‘+‘)(D)l~j- 2(n’+2+r),l’t’,,...,‘m + F(“‘)(D)(x(-2(“‘+1+‘)xl’tl,,...,I,. 

Since 

F(“‘)(D)(x, - IX(2)IXI-2(n’+2+‘)X,‘tf,.....fm 
= ~~~(“‘+1)(D)~~J-2(“‘+2+‘)xl’tl,,___,I,, 

we complete the proof. 0 

Hence we have the equation &(t*@) = r* (Q,(4)) for any section 4. Thus we have 
proved the remark after Definition 2.3. 

4. The inverse Penrose transform over four-manifolds 

In this section, as an extension of Definition 4.4, we give the inverse Penrose transform 
over a four-manifold. It is an interpretation of the formula given by Woodhouse. 

Let M be a four dimensional spin manifold, and let V be a Hermitian vector bundle on M 
with a connection. Since reversing the orientation of A4 exchanges Z+(M) and Z-(M), it 
suffices to consider the inverse Penrose transform only on Z+(M). Thus we assume that the 
Riemannian metric of M is anti-self-dual. Assume also that the connection of V is anti-self- 
dual. This means that the pull back p-t V can be naturally considered to be a holomorphic 
vector bundle with a holomorphic connection on the complex manifold Z+(M). 

Let us define a differential operator D. In conformally flat case, we have local conformally 
flat coordinates, which significantly simplify the computation. But we do not have such 
coordinates on anti-self-dual manifolds. So we shall define D by using an arbitrary local 
orthonormal frame of TM. 

Let (e,) be an oriented local orthonotmal frame of TM on an open subset U. Let (e”) 
be the dual frame of T*M. Since the twistor space is a fiber bundle over A4 associated to 
the orthonormal frame bundle, we can define horizontal tangent vectors by the Levi-Civita 
connection. Therefore, we consider (e,) as a local frame of the space of horizontal vector 
fields. Also (e’) is regarded as a local frame of the space of horizontal forms. Let o be 
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the connection form of T II with respect to the Levi-Civita connection. For each integer a 
such that 1 ( a 5 2n, we define a differential operator acting on f (Z+(U), A*Z+(U) @ 
H -*-CI @ p-’ V) by 

Lie,, = Leo + i(eb)w,b. 

Then, the following lemma can be proved by simple computations. 

Lemma 4.1. Let e’, = ebhi be another local orthonormal,frame. Then we hu\,e L,s(, = 
L^,,,h;. 

With respect to the local trivialization (e,), we define a (1, 0)vector field 3c;lh on Z+(U) 
by using the S0(4)-action on Z+(U) as in Section 2. The next lemma is an immediate 
consequence of the definition. 

Lemma 4.2. Let (e’,) be as above. Let 3&, be the vector filed corresponding to the,frame 
(e’,). Then we have 3&, = h-‘z3Cdh;f. 

Let us define an operator D acting on T(Z+(U). A*Z+(U) @$ HP2-” @ pP’V) as 
follows 

D = -L:^,,i(G)eb. 

Then we have the following lemma by Lemmas 4.1 and 4.2 

Lemma 4.3. The operator D is defined independently of the choice of a local orthonormal 
frameofTU.HenceitisconsideredtobeaglobaloperatoractingonT(Z’(M), A*Z+(M)Q 
H-2-m @ p-’ V). 

The Levi-Civita connection on the base manifold defines the decomposition of the cotan- 
gent bundle of the twistor space. Hence, as in Section 2, we define a map: 

j : T(M, S”A+(M) @ V) + f(Z+(M), A’.‘Z+(M) @$ H-‘-” @p-IV) 

Since the decomposition is global in this case, the map j is also global. 

Definition 4.4. A map Q, is defined as 

Q, : I-(M, S”A+(M) @ V) --f f (Z+(M), A”.‘Z+(M) @ H-2-m @ p-’ V) 

4 t+ j(4) + Ani( 

It can be shown by straightforward computation that this differential form is equivalent 
to the inverse Penrose transform given by Woodhouse [W, Section 51 when V is a trivial 
line bundle. Computations in [W] can be easily extended to the case of non-trivial bundle 
V. Hence we have the following theorem. 
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Theorem 4.5 ([WI). Let 4 be a solution of d,,,@ = 0, then a&2,,,(#) = 0. Hence &, gives 
the inverse Penrose transform. 

Remarks. 
(1) The transform &, does not depend on the Riemannian structure but the conformal 

structure of M. Hence the above definition is equal to Definition 4.4 in the case of a flat 
vector bundle over a conformally flat four-dimensional manifold. 

(2) Since we have D* j (4) = 0, we can write 

Q,(4) = m!F(m)(D>j(4)t 
as in the higher-dimensional cases. 
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